
From Temporal Markup to
Monadic Second-order Logic

Seán Healy

B.A. (Mod.) Computer Science and Language
School of Computer Science and Statistics

Supervisor: Dr. Tim Fernando
April 4, 2017

Contents

1 Introduction 2
1.1 TimeML . 2

1.1.1 TimeML Specification . 2
1.1.2 The TIMEBANK Corpus 3
1.1.3 The French TimeBank Corpus 4
1.1.4 Statistical Analysis of TimeML Usage 4

1.2 Interval Logic . 6
1.3 Temporal Strings . 6

1.3.1 The Satisfiability Problem 7

2 Methodology 8
2.1 Constraint Propagation . 8

2.1.1 Low-level Optimisations for Allen’s Algorithm 10
2.2 Superposition to Splicing . 11

2.2.1 Classes of Superposition . 16
2.2.2 Superposition in TimeML 19
2.2.3 Splicing: A Useful Temporal String Operation 26

2.3 Temporal Taxonomies . 27
2.3.1 An algorithm for Hierarchical Taxonomies 28
2.3.2 Application of the Temporal Taxonomy 31

3 Conclusion 32

Bibliography 33

Appendices 36
Modified Allen Constraint Propagation 36
DLD File for TimeML . 37
French TimeML DLD . 40
Code . 42

1

Chapter 1

Introduction

1.1 TimeML

TimeML is an ISO-standard markup
language for the description of tem-
poral events and relations in docu-
ments. Events and temporal expressions
are marked with XML tags, and rela-
tions are later specified between these
events using tags typically placed at
the end of the document. TimeML
was first introduced by Pustejovsky et
al. (2002). Several corpora have made
use of TimeML since then, among the
largest freely available and accessible
corpora is TIMEBANK 1.0, introduced
in Pustejovsky et al. (2003), which
was relied on heavily in this study of
TimeML as a language (§1.1.2).

Another interesting corpus (for lan-
guage diversity), was the French Time-
Bank corpus discussed and outlined in
Bittar et al. (2011).

1.1.1 TimeML Specifica-
tion

An extensive specification of the tags
used in TimeML is given in Pustejovsky
et al. (2002). Syntactically, TimeML is
described by the document type defini-

tion files listed in the appendices – which
were included with the TimeML corpora
used in this paper.

EVENT and TIMEX3 The tags cen-
tral to all others in TimeML are the pair
EVENT and TIMEX3, which together
label periods of time in which an event
occurs or a temporal expression holds
true. All events and temporal expres-
sions in TimeML are treated as potential
intervals.

LINK tags TimeML makes use of
three LINK tags, namely TLINK,
ALINK and SLINK. The most signifi-
cant of the three tags, and the most ex-
tensively used is the TLINK tag. All
LINK tags serve the purpose of marking
temporal relations between events, tem-
poral expressions or aspectual markers.

TLINK The tag TLINK is used to
mark relations between events or tempo-
ral expressions, where the attribute rel-
Type may hold a relation of type com-
parable to those introduced by Allen
(1983).

2

The temporal relations of TimeML
The relation set from which TimeML
may annotate a document using TLINK
is in fact only a subset of the 13 Allen
relations. Table 1.1 shows the mapping
between TimeML relations and Allen re-
lations assumed in this paper. Note
that IDENTITY and SIMULTANEOUS
both map to =. It was difficult to find a
discernible difference between these two
relations in online resources, so it is as-
sumed that the difference is not one in
the temporal relation among two events,
but in the anchoring of the events – are
the two events one and the same or are
they simply simultaneous?

TimeML relType R ∈ Allen
BEFORE <
AFTER >
IBEFORE m
IAFTER mi
INCLUDES di
IS INCLUDED d
BEGINS s
ENDS f
BEGUN BY si
ENDED BY fi
SIMULTANEOUS =
IDENTITY =

Table 1.1: Mapping TimeML temporal
relations to Allen relations

The Allen relations o and oi (over-
laps and overlapped-by) are not present
in the original TimeML specification for
TLINK relations. This is not to say that
TimeML cannot model an overlaps rela-
tion between two events, it simply can-
not do so using a single TLINK tag.

The overlaps relation x o x′ is de-

scribed using the string x x, x′ x′ in

Fernando (2012). In practice a lot
more event pairs may fulfill the o or
oi relation when compared to m or mi,
though we may not be likely to spec-
ify this relation explicitly in language
– and TimeML is, after all, a markup
language whose usage has been thus
far limited to natural language corpora.
Nonetheless, overlapping events can be
modelled; by the ALINK tag for exam-
ple. This involves explicitly acknowl-
edging the overlapping segment of two
events. E.g. x TERMINATES y,
x′ INITIATES y; “The Ussher read-
ing room is closed by the changeover.
The 24-hour reading room is opened by
the changeover.”. TimeML may use
an aspectual link ALINK to connect
the changeover to bother events x and
xprime, one started by y, and the other
ended by y, the relation between x and
x′ is thus o. The overlaps relation was in
fact added to later versions of TimeML
as OVERLAP BEFORE and OVER-
LAP AFTER, but not surprisingly its
occurrence (in the corpora encountered
in this paper) is extremely rare.

1.1.2 The TIMEBANK Cor-
pus

The TIMEBANK corpus is a corpus
of news articles from the late 90s an-
notated, by a semi-automated process,
in TimeML. The corpus available for
download freely on timeml.org consists
of 78 of these articles annotated to vary-
ing degrees of success with rich temporal

3

http://timeml.org

event and relation markup.

Although Pustejovsky et al. (2002)
gives its own specification of TimeML,
as with natural language, descriptive in-
isight is much more powerful than pre-
scriptive specification. To begin with, a
statistical analysis of the TIMEBANK
corpus was carried out . Although
Pustejovsky et al. (2003) includes its
own statistical analysis of TimeML us-
age across the corpus, since this au-
thor was working off only a selection of
78 (publicly available) items from the
TIMEBANK 1.0 corpus, an additional
statistical study of the sub-corpus was
carried out.

It was found that, although ALINK is
given equally energetic specification ef-
forts in many of the papers on TimeML,
it is in practice in the genre of news ar-
ticles at least, very rarely used. SLINKs
are used to a larger degree, but TLINK
emerges as the most prolific tag by a
large margin. The class of TLINK is
rarely a SIMULTANEOUS relation in
TIMEBANK 1.0. The IDENTITY re-
lation is a much more common occur-
rence. More detailed statistical data can
be found in 1.1.4.

1.1.3 The French Time-
Bank Corpus

The French TimeBank, which is also
easily accessible on the internet, was
another source of insight into the way
TimeML is commonly used. One thing
that became apparent in TIMEBANK
1.0 was the redundancy of the MAKE-
INSTANCE tag. The purpose of this

Tag Count
TLINK 9249
EV ENT 8919
TIMEX3 1565
SLINK 1899
ALINK 192

Table 1.2: Comparison of the occurrence
of the main tags in TimeML

tag is described in Pustejovsky et al.
(2002) as being a necessity for creating
instances of events. However, in TIME-
BANK 1.0, there is never more than one
MAKEINSTANCE tag for each event.
The one-to-one (bijective) relationship
between the occurence of an EVENT
tag, and a MAKEINSTANCE was no-
ticed before Bittar et al. (2011), as
the corpus of annotated French articles
doesn’t feature MAKEINSTANCE, nor
is the tag included in the DLD file for
their definition of TimeML, which is
built on ISO-TimeML.

1.1.4 Statistical Analysis of
TimeML Usage

The following statistics are gathered
from three TimeML corpora freely avail-
able on the internet: TIMEBANK 1.0,
French TimeBank, and several articles
from TIMEBANK 1.1.

The purpose of this statistical analysis
was to figure out which parts of TimeML
are most used in practice, so that a well-
used fragment of the language can be se-
lected for study. TimeML is a vast lan-
guage, easily extensible, and it would be
difficult to work cohesively on connect-

4

Tag Count
BEFORE 2792
IS INCLUDED 1847
INCLUDES 1409
AFTER 1071
IDENTITY 791
DURING 513
SIMULTANEOUS 350
BEGINS 116
ENDED BY 96
BEGUN BY 91
IBEFORE 67
ENDS 56
IAFTER 40
OV ERLAP BEFORE 6
OV ERLAP AFTER 4

Table 1.3: Comparison of the promi-
nence of relType attribute values across
the corpora for TLINK

Tag Count
MODAL 988
EV IDENTIAL 664
FACTIV E 162
COUNTER FACTIV E 32
CONDITIONAL 25
NEG EV IDENTIAL 21
NEGATIV E 7

Table 1.4: Comparison of the promi-
nence of relType attribute values across
the corpora for SLINK

Tag Count
INITIATES 82
CONTINUES 44
TERMINATES 41
CULMINATES 17
REINITIATES 8

Table 1.5: Comparison of the promi-
nence of relType attribute values across
the corpora for ALINK

Tag Count
DATE 1136
DURATION 209
TIME 185

Table 1.6: Comparison of the promi-
nence of TIMEX3 types across the cor-
pora

Tag Count
OCCURRENCE 5685
REPORTING 994
STATE 838
I ACTION 613
I STATE 446
ASPECTUAL 162
MODAL 72
PERCEPTION 67
CAUSE 22
EV ENT CONTAINER 20

Table 1.7: Comparison of the promi-
nence of EV ENT types across the cor-
pora

5

ing the entire language to MSO. Instead,
the most prominent features in the lan-
guage were chosen for further study,
namely the combination of events and
temporal links (EV ENT and TLINK).

1.2 Interval Logic

Definition 1.2.1. Interval A period of
time during which some fluent holds
from beginning to end. Unlike event
classes, which may categorise multiple
intervals, an interval may not define sev-
eral disconnected periods in a timeline.

For the purposes of this paper, it is as-
sumed that all events and temporal ex-
pressions in TimeML are intervals. This
is not strictly-speaking always the case,
due to the possibility of event classes
or intermittent events, as discussed in
James et al. (2010).

However it was found, during this au-
thor’s statistical analysis of the TIME-
BANK corpus, that most of the events
tagged are basic intervals in structure,
and in most cases a successful conver-
sion from TML to Allen temporal rela-
tion network diagrams is possible.

1.3 Temporal Strings

In this paper, temporal strings, temporal
fluent strings, timelines, and so on, may
all be considered synonymous terminol-
ogy for a textual representation of in-
tervals. A temporal string is a string of
sets, each containing fluents describing
the state of the world at that position in
the string. Fluents may be ABoxes (e.g.

negated expressions) or TBoxes (e.g. in-
tervals). A timeline is consistent with
another timeline if both can be spliced
together to form a new, more complete
timeline. A formal definition of splic-
ing as an operation between temporal
strings, and temporal string languages,
is given in great depth in section 2.2.

Temporal strings and MSO
Monadic second-order logic (MSO)
was linked to regular languages by
Büchi (1962), meaning formal ver-
ification methods using finite-state
techniques can be built from MSO,
a subset of second-order logic limited
to the quantification of second-order
predicates of arity one. It has been
noted (e.g. Fernando (2016)), that the
temporal string representation (e.g.

E decidingR) is essentially equiv-

alent to MSO. There are clear states
between positions in the string. The
goal of this paper is to study fragments
of TimeML and develop an approach to
attaining these temporal strings from
TML documents. The methodology is
described in detail in Chapter 2, but the
summary of what the author’s approach
entailed is as follows:

� Apply Allen constraint propagation
to the knowledge represented in a
TML document to infer unwritten
relations between events.

� From the relations represented in a
TML document, and from those in-
ferred from Allen constraint prop-
agation, build temporal strings ac-
cording to the mapping described in

6

Fernando (2013).

� Develop an operation for merging
these strings together regardless of
length (traditionally superposition
is only possible between strings
of equal length). This operation
can be used iteratively to build a
temporal string representation of a
TML document.

� Develop a heuristic for deciding
the order in which merging these
strings should be carried out, based
on the logical structure of events.

1.3.1 The Satisfiability
Problem

One of the main unavoidable drawbacks
of Allen constraint propagation is the
fact that the algorithm does not detect
invalid input, except if the inconsistency
is evident between three nodes in the
temporal network Allen (1983). Given a
knowledge base of temporal relations be-
tween intervals, determining if the net-
work is contradictory is equivalent to
the satisfiability problem, and thus NP-
hard. The Prolog code snippet in Fig-
ure 1.1 evaluates to true if a network of
temporal relations has at least one valid
interpretation (though there is no guar-
antee this code will run fast). The pred-
icate rmember, behaves similarly to the
Prolog built-in member of list predicate,
though it unifies a 3rd predicate with a
version of the list excluding the member.

consistent_net(Edges) :-

consistent_state(Edges),

((rmember(Edge,Edges,X),

disjunct(Edge)) ->

guess(Edge,D),

consistent_net([D|X]); true).

consistent_state(Edges) :-

forall(

(

member([A,R1,B],Edges),

member([B,R2,C],Edges),

member([A,R,C],Edges)

), (

constraints(R1,R2,RC),

R subset RC

)

).

guess(L,[M]) :-

member(M,L).

disjunct([_,[_],_]) :- !, fail.

disjunct(_).

Figure 1.1: Testing a temporal net-
work for satisfiability in Prolog

7

Chapter 2

Methodology

2.1 Constraint

Propagation

Before beginning the first step men-
tioned in the introduction, some im-
provements are proposed for the con-
straint propagation algorithm first spec-
ified by citeauthorallen. In Allen (1983),
the time complexity of the program for
adding n nodes to an empty interval
network is inaccurately stated as O(n2).
Though a time-complexity of O(n2) is
attainable, there is a major flaw with
Allen’s Add function (which is called n
times), and that is the usage of a simple
queue, rather than the usage of a queue,
hash table hybrid structure. Allen’s al-
gorithm uses a queue to schedule ToDo
tasks during the main loop of the al-
gorithm. The conclusion of the algo-
rithm depends on the emptiness of the
ToDo list. Although it is assumed dur-
ing Allen’s analysis that the queue will
never contain duplicate items, this is not
the case in reality, and this causes a lot
of redundant computation.

Through the use of both a hash table
and a queue, one can ensure that items
are only scheduled in the queue when

they are not already present in there.
The O(1) lookup time for the hash table
is responsible for no impact on the time-
complexity of the algorithm. Algorithm
1 is the version given in Allen (1983) for
constraint propagation.

Analysis of Allen’s algorithm
Allen noted, since the progressive
enlargement of the ToDo queue was de-
termined by a proper subset operation
between the current state of a relation
set, and the state of the relation set
once it is affected by a constraint from
the transitivity table, that the ToDo
queue will only ever grow at most 13n2

times. There are n2 edges between n
nodes in a directed graph, where each
node is connected to itself and all other
nodes. Allen notes that although Add
may add more than n nodes to the
queue, on average, each call to Add
enqueues n times, thus the overall time
complexity of n calls to Add is Θ(n2).
We can go further to say that n calls
to Add in an algorithm for iterative
constraint propagation is worst case
On2. If we imagine an accumulator Q
for all the queues in n calls to Add,

8

which tracks the number of enqueue
calls to all queues; It should never
grow to a size greater than 13n2, as
13n2 valid modifications (adding new
information) of an interval network
would result in a fully defined network
with no ambiguity; at such a point, the
parameter necessary for enqueue would
be unattainable: a modification of the
network must add new information.

Algorithm 2 shows the modified algo-
rithm, relying on a hash set in conjunc-
tion with the ToDo queue, and shifting
the computation of new relations to a
new location within the two for loops.

Allen carried out this analysis while
assuming that the ToDo queue would
never contain duplicates. We found, in
practice, that each call to Add would use
a queue structure growing to include du-
plicate constraints scheduled for propa-
gation. A call to Add that would have
n enqueues, disregarding duplicates in
the queue, would have as many as n2

when duplicate entries in the queue are
considered; this decelerates the running
time of the constraint propagation pro-
gram from the intended O(n2) to a much
slower figure. Furthermore, it requires
a queue that may grow in length to be
larger than n2. Through some tweaking
of Allen’s approach, and by the intro-
duction of a hash table, these bugs were
fully rectified, and reaching O(n2) time
was possible.

There is another problem, in the area
of memory this time. Allen’s justifi-
cation for the “reference interval” data
structure described in detail in his pa-
per is the reduction in space complex-

Algorithm 1 Allen constraint propaga-
tion

1: procedure C(R1, R2) . Col-
lect constraints from the transitivity
table.

2: S ← ∅
3: for r1 ∈ R1 do
4: for r2 ∈ R2 do
5: S ← S ∪ T (r1, r2)
6: end for
7: end for
8: return S
9: end procedure
10: procedure Add(iRj)
11: empty queue q
12: enqueue 〈i, j〉
13: while ¬empty(q) do
14: dequeue 〈i, j〉
15: iNj ← iRj
16: for k satisfies comp(k, j) do
17: kRj ← kNj ∪

C(kNi, iRj)
18: if kRj ⊂ kNj then
19: enqueue 〈k, j〉
20: end if
21: end for
22: for k satisfies comp(i, k) do
23: iRk ← iNk ∪

C(iNj, jRk)
24: if iRj ⊂ iNk then
25: enqueue 〈i, k〉
26: end if
27: end for
28: end while
29: end procedure

9

Algorithm 2 Allen constraint propaga-
tion

1: procedure Add(iRj)
2: empty queue q
3: empty hashset h
4: enqueue 〈i, j〉
5: iNj ← iRj
6: while ¬empty(q) do
7: dequeue 〈i, j〉
8: h← h− {〈i, j〉}
9: for k satisfies comp(k, j) do

10: kRj ← kNj ∪
C(kNj, kRj)

11: if kRj ⊂ kNj then
12: if 〈k, j〉 /∈ h then
13: enqueue 〈k, j〉
14: h← h ∪ {〈k, j〉}
15: end if
16: kRj ← kNj ∪

C(kNi, iRj)
17: end if
18: end for
19: for k satisfies comp(i, k) do
20: if iRj ⊂ iNk then
21: if 〈i, k〉 /∈ h then
22: enqueue 〈i, k〉
23: h← h ∪ {〈i, k〉}
24: end if
25: iRk ← iNk ∪

C(iNj, jRk)
26: end if
27: end for
28: end while
29: end procedure

ity from O(n2) (problematic with 80s
RAM) to O(n). However, the ToDo
queue is entirely disregarded in this
analysis. I found, through erroneously
allocating the queue some memory on a
linear scale, that this would often lead
to segmentation faults in the C++ im-
plementation of Allen’s algorithm. The
problem lies in the fact that there are
n2 possible relations between intervals
in a temporal network, so the ToDo
list, although not often reaching that
far, will occasionally grow to n2. Thank-
fully, n2 memory for a corpora of short
articles is trivial by today’s standard.
In fact, the C++ implementation of
Allen’s algorithm (listed in the appen-
dices), uses a low-level 2-dimensional ar-
ray (or matrix) to model a temporal
network rather than a reference inter-
vals data structure. The reason for this
is that memory is now a abundant re-
source, and the improved constant fac-
tor of doing things on such a low level
allows for the almost instantaneous pro-
cessing of the entire corpus.

2.1.1 Low-level Optimi-
sations for Allen’s
Algorithm

Some low-level optimisations are pro-
posed and implemented to improve the
running time of the Allen constraint
propagation algorithm.

Sets Allen’s algorithm makes use of
sets and several operations between
sets. However, the types of sets seen
are special because they never grow

10

larger than 13 in size, and they always
contain elements from the same pool of
13: The 13 Allen relations. Rather than
storing the sets literally in memory,
they can be represented as 13bit binary
integers, where a 1 at a given bit means
the relation corresponding to that bit is
in the set. This also allows for bitwise
operations (the lowest level operation
a CPU can perform) and boolean logic
to be applied for common set operations.

Set operation Binary operations
Set union a OR b
Set intersection a AND b
Set equality a EQ b
Subset (a AND b) EQ a
Proper subset (a AND b) EQ a ∧ a NEQ b

The queue The queue may grow to
consume worst-case O(n2) space. As-
suming that is within the allowances of
your hardware (it was in the author’s
case), allocating this space in advance
can allow for the usage of a structure
called a circular queue.

Unlike a linked list, which dynami-
cally increases in size, using an unpre-
dictable amount of memory, often re-
lying on a garbage collector to so so,
a circular list has a fixed capacity. A
queue can only be implemented by the
doubley-linked variant of the linked list,
as it performs operations on both sides,
top and bottom. Two reference point-
ers, in addition to the integer value
stored by a node in the chain, means
that a linked list may use up to 3 times
as much memory as the circular queue
if the worst-case scenario is realised.
There is a clear time-advantage to us-
ing a circular queue. Enqueue and de-

queue operations on a linked list must
modify not only the reference pointer
of the first or last item in the queue,
but also the penultimate nodes pointer
in the opposite direction. A linked list
structure also relies on garbage collec-
tion. In short, it is noted that the mem-
ory usage by Allen’s algorithm is pre-
dictable (polynomial), and so the im-
plementation in this paper (written in
C++) uses a circular queue structure for
the ToDo list. (Cormen et al., 2009, p
232-235) gives a clear analysis of the cir-
cular queue structure.

2.2 Superposition to

Splicing

We propose a new declarative model for
fluent string superposition that bounds
the space needed for a superposition op-
eration to the size of the largest pos-
sible string length in the resulting set.
In recent papers, the definition of string
superposition used to describe fluents a
and b occurring in the same time frame,
is as follows:

a@b := trim

(
bc

(
∗ a + ∗ & ∗ b + ∗

))
(2.1)

trim(s) :=

{
trim(s′) if (∃s′)s ∈

{
s′, s′

}
s otherwise

(2.2)

bc(αβs) :=

s if α = β = s = ε

bc(βs) otherwise if α = β

α bc(βs) otherwise

(2.3)

As in (2.1), in this paper the binary op-

11

eration @ is used to mean two fluents oc-
cur in the same time frame. This oper-
ation is both commutative and associa-
tive (a@b = b@a, (a@b)@c = a@(b@c)).
The superposition of two distinct inter-
vals, a@b, models a set of 13 strings,
where each element corresponds to one
of the Allen relations (a finite set). Log-
ically, then, a star-free language should
suffice to describe superposition as a bi-
nary relation, and a star-free language
should exist for general superposition of
n intervals. With S as the set of star-
free languages (the set of all finite sets),
I as the infinite set of intervals, and F ,
the set of binary operations such that
∀(f ∈ F)(f : I × I 7→ S), one has
(∃ϕ ⊆L S)ϕ |= f . A ⊆L B means that
all formal language expressions used in
model A are elements of the set B.

To begin with, while superposing two
intervals a and b, the resulting set of
strings only contains elements s:

trim(πas) = a n (2.4)

where n ≤ 2

Furthermore, the superposition of m in-
tervals will only ever produce strings of
length ≤ (2m − 1). The proof for this
can be carried out by inductively su-
perposing all intervals over an empty
string ε (updating the frame to the max-
imum length superposition each time),
until the time-frame contains all inter-
vals, and is at its largest length. Re-
gardless of the string’s composition, to
superpose an interval over it will only
ever increase the length of the resultant
string by a maximum of 2, except when
superposing over ε. To superpose i over

ε would simply produce i .

Note that ε, denoting an empty tem-

poral string, is not the same as , which

denotes a temporal string of length 1,
where the set of fluents holding at 1 is
∅.

Given a string onto which an inter-
val is superposed, there are 10 unique
ways (excluding rotations) of choosing
point pairs for the superposition opera-
tion (Figure 2.1). Choosing a point in
the string can either involve choosing a
boundary between two consecutive sets,
or choosing a single set, creating a new
boundary by duplicating the set at that
position, then choosing that boundary.
The latter method of choosing a point
produces a resultant string with an in-
cremented length. Since one chooses a
pair of points for segmentation, the re-
sultant superposed string may extend
the input string by (up to) 2 sets.

(2.5) to (2.8) denote point choices
beyond the edge of the string. In
these edge-cases, an additional empty
set must be appended or prepended
to the side of the string before the
component-wise union of the superposed
interval is applied. Thus choosing a
point here increases the overall string

length by 1. • depicts choosing

a point for superposition at a bound-
ary between sets, causing no increase
in the length of the resultant super-
posed string over the original string ar-

gument. However, • duplicates a

set in the string (before component-wise
union with the interval), causing an in-
crease of 1 in the resultant superposed

12

string. (2.7), (2.9) and (2.14) capture
cases where an increase of 2 is caused
by applying the superposition opera-
tion. Two additional sets are added to
the string before component-wise union
begins. Both sets are added to pro-
duce new respective boundaries between
which the component-wise union is ap-
plied.

m

@
j=1

ij = (ε@i1)@i2@ . . .@im (2.15)

We know that (ε@i1) can only pro-
duce a singleton set containing a string
of length one, and after that there are
(m − 1) operations applied sequentially
to the resultant string set. Each of these
may increase elements of the string set
by a length of two. Therefore the max-
imum length of a string in the final set
is 2(m− 1) + 1 = (2m− 1).

The basic operation of superposing
(@) time intervals i1 . . . im (where m is
a constant) in the same time-frame is to
place the intervals in their own respec-
tive string wrappers, and perform con-
ventional superposition over these string
sets. Since no superposition of m in-
tervals will contain a string of length
> (2m − 1), one could easily refine our
earlier definition of @ (2.1) to use only
star-free languages, i.e.

m

@
j=0

ij := trim

(
bc

(
(2.16)

m

&
j=0

{0,2m−2} ij
{1,2m−1} {0,2m−2}

))
We can apply another reduction to

$ • . . . • . . . (2.5)

$ • . . . • . . . (2.6)

• $. . . • . . . (2.7)

• $. . . • . . . (2.8)

• $. . . $ • (2.9)

$ • . . . • $ (2.10)

• $. . . • $ (2.11)

. . . • . . . • . . . (2.12)

. . . • . . . • . . . (2.13)

. . . • . . . • . . . (2.14)

Figure 2.1: The 10 unique ways to
select a portion of a string for super-
position (allowing set splitting). The
• points may be placed at a string po-
sition, between string positions, at
the string edge, or beyond the string
edge.

13

the star-free regular expression

{0,2m−2} ij
{1,2m−1} {0,2m−2} (2.17)

by intersecting it with the set of non-
empty strings of length ≤ (2m− 1):

{s | 1 ≤ |s| ≤ 2m− 1} (2.18)

In this paper, the shorthand #(1, 2m−
1) is used to denote the type of set out-
lined in (2.18). The result of this lan-
guage intersection is the finite language

a ij
b c (2.19)

where b ≥ 1 and a + b + c = m (noting
that m is a known constant).

Beyond star-free Omitting any us-
age of the costly Kleene star from our
definition of superposition is a fruitful
first step, but there is one major prob-
lem with our definition of superposition
thus far, and that is the reliance on
block compression (bc) and trim func-
tions. We will see that this involves
redundant computation, and unneces-
sary ambiguity when theorem provers
like Prolog are brought into the picture.

An ideal finite-state model for su-
perposition would be one which is not
only star-free, but also unambiguous. If
we imagine a nondeterministic chain of
finite-state transducers, T = t1 . . . tn,
where the input of tp is the output of
tp−1, for 2 ≤ p ≤ n, and the overall in-
put and output of the system is the in-
put to t1 from T and the output of tn to
T respectively – if such a system takes
as input a set of m intervals ξ = i1 . . . im,

and produces as output a valid superpo-
sition ζ ∈@

m
j=1 ij, then there must only

be one valid path bringing the input ξ
to produce ζ by the system T . This is
not yet true for our model.

Ambiguity in finite-state systems
We define ambiguity not by non-
determinism but by the paths taken to
arrive at a given conclusion ζ from a
given input ξ. A finite-state machine
contains (among other things) a state-
transition function δ, a set of states S,
a set of accept states F ⊆ S, a starting
state s0 ∈ S.
δ can be thought of as a set of triples.

An input ξ reaches a valid conclusion if
there exists a string of tuples uvw, where
u = 〈s0, α1, X〉, X ∈ S, and v ∈ δ∗, and
w = 〈Y, α1, f〉, Y ∈ S, f ∈ F , such that
παuvw = ξ. The conclusion ζ of a finite-
state transducer (or a chain thereof) is
a tuple of the end-state and the out-
put produced before the end-state was
reached, 〈f, o〉. A finite-state system,
represented as a predicate g(ξ, uvw, ζ),
is unambiguous iff

(∀path)(∀alt) (2.20)

(g(ξ, path, ζ) ∧ g(ξ, alt, ζ)→ path = alt)
(2.21)

Here is one case where the bc and trim
approach displays ambiguity:

a@b = trim(bc(y y & z))

(2.22)

a@b = trim(bc(y & z)) (2.23)

(2.22) and (2.23) both produce the same

output, y z , though they evidently

14

don’t use the same process (state tran-
sitions) to reach the output; (2.22)
performs traditional superposition on

strings of length 3 taken from a ij
b c,

and (2.23) performs the operation on
strings of length 2. If one were to define
this superposition as a Prolog predicate,
spose, with the purpose of feeding input
to a theorem solver, multiple, identical
solutions would be found in the search
graph. Ideally, we’d like

findall(S,spose([a,b],S),L).
to produce a list L of length 13, for the
number of ways there are to superpose
two intervals. Using block compression
and trimming in spose causes a larger
number of results however, due to its
ambiguous non-deterministic approach.
As with the use of Kleene-star expres-
sions, which was addressed earlier, this
duplication of results, via multiple state
transition strings uvw, introduces re-
dundant computation, and fails to de-
scribe a precise declarative model for su-
perposition. Trimming and block com-
pression, as an approach to modelling
the no time without change philosophy,
only succeeds by casting a wide net, then
sifting through the results with bc and
trim (imperatively).

Although the trim and bc approach
is descriptively succinct, a sharper im-
age of superposition can be made by in-
tegrating the time is change philosophy
into the semantics of the superposition
operation.

Modified superposition The binary
operation 〈&〉 has so far been working off
the definition used in Fernando (2002)

and Fernando (2004), namely

(α1 . . . αn)&(β1 . . . βn) = (2.24)

(α1 ∪ β1) . . . (αn ∪ βn)

This type of component-wise union
across two strings of equal length has the
benefit of not regarding order of compu-
tation. The union of the two sets from
each string position pair is related in no
way to the other union operations. All
unions could be easily carried out con-
currently, for example. The draw-back
is that it relies on the application of bc,
and without this, it does in fact pro-
duce strings with portions exhibiting no
change in their sequential fluents. This
may be intended behaviour in other ap-
plications of set strings, but as a model
for temporal event description, it falls
down.

The relation between the union op-
erations is in fact very relevant in the
case of interval superposition, as one is
concerned with avoiding repeated set se-
quences, that is:

(αp ∪ βp) 6= (αp+1 ∪ βp+1) (2.25)

for (1 ≤ p ≤ n − 1). Integrating
the constraint (2.25) into our descrip-
tion of superposition would cause the
preconditions of the operation to grow
in size; not only must the arguments of
superposition be of the same length, but
the resulting superposition must not in-
clude adjacent string positions without
change.

Superposition of set strings can be
carried out by finite-state machines,
which can be represented as MSO sen-
tences. The two strings, α1 . . . αn and

15

β1 . . . αn are sent as input to a finite-
state system. MSO 〈Σ,Γ,∆〉 is a tuple

〈[n], [m], SAn, SBm,

{JAxK}x∈Σ, {JBxK}x∈Γ, {JUxK}x∈∆〉

where A and B are monadic predicates
which map their subscript to a position
in one of the input strings. U maps
its subscript to a position in the output
string. Thus, unlike the traditional us-
age of MSO for the purpose of model
matching with a single input, this 7-
tuple is used to model binary operations
over strings of sets.

The subscript 〈Σ,Γ,∆〉 represents the
alphabets (Σ and Γ) of the input argu-
ments, and the alphabet (∆) of the out-
put which is usually some set operation
between Σ and Γ. In the case of super-
position, ∆ = Σ ∪ Γ.

SAn := {〈p, p+ 1〉 | 1 ≤ p ≤ n− 1}
SBn := {〈p, p+ 1〉 | 1 ≤ p ≤ m− 1}

where n,m ≥ 0. Now superposition
can be defined using the following MSO

〈Σ,Γ,∆〉-sentence:

(∀x)((2.26)

(((∃y)(SA(x, y)))←→
((∃y)(SB(x, y))))

((∀Aα)(Aα(x)→ Uα(x)))∧
((∀Bβ)(Bβ(x)→ Uβ(x)))∧
(((∃y)(S(x, y)))→

((∃Uµ)(Uµ(x) ∧ ¬Uµ(y))))

)

This modified form of superposition
can be described by a function g:

g(α, β) := f(∅, α, β) (2.27)

f(p, α, β) :=

(a ∪ c).f(a ∪ c, b, d) if α = a b ∧ β = c d

∧a ∪ b 6= p

ε otherwise if α = β = ε

∧p 6= ∅
null otherwise

The recursive formula (2.27) can
be captured by the Prolog predicate
superpose as follows in Listing 1.

superpose(A,B,U) :- sp([],A,B,U).

sp(Pre,[H1|T1],[H2|T2],[U|T]) :-

union(H1,H2,U),

U \= Pre,

sp(H,T1,T2,T).

sp(Pre,[],[],[]) :- Pre \= [].

Listing 1: Modified superposition
described in Prolog

2.2.1 Classes of Superposi-
tion

When we speak of superposition, we
may mean superposition of strings 〈&〉,
superposition of languages 〈&〉, super-
position of intervals 〈@〉, or as will
soon be encountered, superposition of
string and interval 〈@̂〉. From at least
Fernando (2004) onwards, the defini-
tion (2.28) for language superposition is
used.

L&L′ =
⋃
s∈L

⋃
s′∈L′

s&s′ (2.28)

16

where s&s′ is traditional superposition
of strings.

The model for superposing intervals
(or any class of fluents), is described
by padded superposition in Fernando
(2002), and the author has since reduced
this definition (in the case of superpos-
ing two intervals) to one avoiding the use
of the Kleene star, by superposing lan-
guages of the form (2.19).

The aim was to create a minimal,
purely declarative description of super-
position, and that has yet to be achieved
for the superposition of arbitrary n in-
tervals, n > 2. The model for superpo-
sition described by (2.26) cannot sim-
ply be inserted into (2.16) to replace
the traditional model of superposition,
because (2.16) relies on repetitions in
strings to model superposition – but the
modified superposition of strings opera-
tion doesn’t allow repetitions.

One could, in the loop, apply tradi-
tional superposition until the last itera-
tion, and then apply modified superposi-
tion to ensure no repetitions occur, but
that would involve maintaining a large
sum of “potential solutions” during the
execution of the loop, which are dis-
carded by the final application of mod-
ified superposition. Avoiding this “wide
net” approach was the main goal how-
ever.

The solution the author came up
with for superposition of intervals 〈@〉,
was the introduction of an additional
operation 〈@̂〉, which is applied between
a string and an interval.

Terminology In TimeML, all
events are intervals. We may
consider the concept interval, as
in “the interval i”, to be inter-
changeable with the notion of a
set string of length 1, where the
set at position 1 is a singleton
{i}, i.e.

TML interval i := i

Recalling the 10 unique ways that ex-
ist to choose parts of a string for super-
position of an interval (Figure 2.1), it
should be possible to model superposi-

tion of an interval i over a string of

any length quite easily. Unlike tradi-
tional superposition of strings, and the
modified superposition outlined previ-
ously, equal length would not be a pre-
condition among the input here (most
strings are greater than the length of
an interval, which is 1), nor would the
output be the same length as the in-
put. In fact, s@̂i would model strings
s′, max(1, |s|) ≤ |s′| ≤ (|s|+ 2).

Before beginning, some structures
that will prove useful later should be
outlined. The meta-character • may be
placed at boundaries between sets in a
set string to denote the pair of points
that will mark the string segment within
which the interval is superposed. For

example, • ϕ1 . . . ϕn • would mean su-

perposing some interval over each set in
the string.

A binary operation 〈%〉 between a
string and language is defined, such that
the string (left) is segmented into strings

17

in the language (right), using the point
character to mark the point of segmen-
tation.

padded(s)←→ s = s′ ∨ s = s′

(2.29)

tailed(s)←→ (s = s′•)∨ (2.30)

s = s′

marked(s)←→ s = s′ • s′′ (2.31)

s%L←→
(

(¬padded(s)→ X = {s •})⊕

(X = ∅)
)∧
(

(¬(marked(s) ∨ padded(s))→

Y = {• s}

)⊕
(Y = ∅)

)∧
L = X ∪ Y ∪ {s′α • αs′′ |
s = s′αs′′∧
|α| ≤ 1∧
¬tailed(s′α) ∧ ¬marked(αs′′)

} (2.32)

Next we extend the behaviour of 〈%〉,
so that it may have either a string or a
language on the left hand side. For a
language as the left argument, the defi-
nition of 〈%〉 from (2.32) is used inside
a set generator (2.33).

L%L′ ←→ L′ =
⋃
s∈L

{s′ | s%L′′ ∧ s′ ∈ L′′}

(2.33)

We define the binary operation 〈%n〉
for n ≥ 1 applications of 〈%〉, i.e. (2.34).

X%nL←→
(n > 1 ∧X%L′ ∧ L′%n−1L)⊕ (X%L)

(2.34)

where X is either a string or a language.
In the case of 〈%2〉, the set of possi-
ble substrings for superposition is be-
ing modelled, each string in the language
containing exactly 2 non-adjacent point
markers •.

To superpose an interval or fluent over
a portion of a string, an operation be-
tween 2-mark strings, s = u • v • w,
and intervals i, is defined, which applies
component-wise union on all α ∈ v. The
operation 〈&̂〉 is defined:

(u • v • w)&̂i := u(v& i |v|)w (2.35)

where 〈&〉 is interpreted as the tradi-
tional superposition operation of equal
length strings, disregarding rules regard-
ing repetitions.

Finally, these operations may be used
in a model for 〈@̂〉:

s@̂i := {s′&̂i | s%2L ∧ s′ ∈ L} (2.36)

This may be applied iteratively to su-
perpose arbitrary n intervals, i.e. (2.39).

18

i %2L←→ L = {

• i •,

• i • i ,

i • i •,

i • i • i ,

• i •,

i • •,

• i •,

• • i ,

i • •,

• • i ,

• i •,

• i • i ,

i • i •,

}

Figure 2.2: The 〈%2〉 operation ap-

plied to the set string i , mapping

to a set of 13 2-mark string segmen-
tations.

L@̂i :=
⋃
s∈L

s@̂i (2.37)

X@̂I :=
⋃
i∈I

X@̂i (2.38)

n

@
j=1

ij = ((i1 @̂ i2)@̂i3) . . . (2.39)

(2.37) and (2.38) simply show how the
〈@̂〉 operation is applied to languages.
Since 〈@̂〉 models the same result set as
(2.1), except without redundant compu-
tation and duplicate results. We can
consider them logically equivalent (re-
calling that an interval may be consid-
ered a set string of length 1, containing
a singleton with the interval).

@̂ |= @

From here on, we may use the 〈@〉 op-
eration synonymously with 〈@̂〉, as we
will always be referring to the behaviour
modelled by 〈@̂〉.

2.2.2 Superposition in
TimeML

Events in TimeML documents (TML)
are intervals which are often tenuously
linked to other intervals. In many cases,
a cluster of events {i1, . . . , in} are not re-
lated at all. The expressive power of the
superposition operation may be applied
here to describe such cases (2.43).

@
i∈{i1,...,in}

i (2.40)

19

(2.43) is for the case where {i1, . . . , in}
are related in no discernible way in the
TML document. A lot of the time, two
events will be connected in an ambigu-
ous manner rather than an entirely un-
specified manner. For example, we may
only know that e1 and e2 are related to
some e3 by relations r ∈ con. From that,
we can tell that the string representation
for the document will contain at least
one set α ⊃ e1, e2 . The Allen relation

between e1 and e2 is ambiguous, as it
could be anything in

r ={d, di, o, oi, s, si, f, fi,=} (2.41)

=Allen− {m,mi,<,>} (2.42)

(2.42) is arguably a better notation to
use, as it is closer to English in the way
it expresses the relation between e1 and
e2, “r is any Allen relation, but not m,
mi, < or >”.

Suppose, instead, r = {m,mi,<
,>}. (e1 r e2) may be combined
with basic superposition, through the
use of language intersection. Say, we
know that, other than the constraint on
(e1 r e2), {e1, . . . , en} are disconnected
events. The language of strings which
may represent the temporal network can
be described by(

@
e∈{e1,...,en}

e

)
∩L (2.43)(

> a e1,¬e2 ¬e1,¬e2
b e2,¬e1 > c ∪L

> a e2,¬e1 ¬e1,¬e2
b e1,¬e2 > c

)
where > is the symbol for a fluent that
always evaluates to true (a tautology),

and 0 ≤ a+ b+ c ≤ 2n− 3. We are now
moving away from the interpretation of
language as a set of strings, to language
as a set of fluents, where fluents may be
simple strings or expressions that eval-
uate to true or false for a string (each
fluent models strings).

s ∈L L←→ (∃ϕ)(ϕ ∈ L ∧ ϕ |= s)
(2.44)

L ∪L L′ |= {s | s ∈L L ∨ s ∈L L′}
(2.45)

For example, ¬e models any interval
that is not e, whereas e models exactly
one interval, e. Intervals can therefore
be considered a special case of fluents
modelling themselves alone.

The operation 〈∩L〉, as you may have
inferred from our description of 〈∪L〉
(2.45), is used to intersect languages of
fluents. A language of fluents L models
some language of strings L. 〈∩L〉 doesn’t
calculate the intersection of languages,
but the intersection of languages mod-
elled by the fluent language arguments.

L ∩L L′ |= {s | s ∈L L ∧ s ∈L L′}
(2.46)

We have defined the operation 〈@〉 ex-
tensively as either an operation between
intervals, a string and an interval, or a
language and an interval (or language of
intervals). However, it would be useful
if it could be an arbitrary operation be-
tween strings of any size, or languages
thereof.

Without the limitation that the right
hand side must model intervals (string
of length one containing a singleton set),
(2.43) could be rewritten as (2.47)

20

(
@

e∈{e1,...,en}

e

)
@L(

e1,¬e2 ¬e1,¬e2 e2,¬e1 ∪L

e1,¬e2 ¬e1,¬e2 e2,¬e1 ∪L

e1,¬e2 e2,¬e1 ∪L

e1,¬e2 e2,¬e1

)
(2.47)

(2.47) superposes a language of fluent
strings s, 2 ≤ |s| ≤ 3, over the language
(@e∈{e1,...,en} e). This would involve new

behaviour for the 〈@〉 operation. Until
now, 〈@〉 has only ever been applied be-
tween languages or strings with disjoint
alphabets, Σ ∩ Σ′ = ∅. Now it is be-
ing applied to languages with intersect-
ing alphabets.

Proposition 1. With disjoint alpha-
bets, 〈@〉 may only increase the size of
the resultant language.

With intersecting alphabets, 〈@〉
must unify the corresponding parts in
strings to maintain consistency with def-
inition 1.2.1. Therefore we state Propo-
sition 2

Proposition 2. 〈@〉may increase or de-
crease the size of the language for argu-
ments with intersecting alphabets.

In (2.47) for example, the language
(@e∈{e1,...,en} e) is decreased in size, since
both e1 and e2 occur in every string, and
the right hand side of 〈@L〉 is anchored
at the right and left by either e1 and e2.

Any string s ∈ (@e∈{e1,...,en} e), where

s ∈L > ∗ e1, e2,> > ∗, will be ex-

cluded in the superposition.

Fluent conjunction Before we go
further, we should discuss how the basic
superposition operation (on which the
operation 〈@L〉 is built) will work; i.e.
the 〈&L〉 operation in (2.48)

s@Ls
′ = {s′′&Ls′ | s%|s

′|+1L ∧ s′′ ∈ L}
(2.48)

Rather than using component-wise
union across strings (as traditional su-
perposition 〈&〉 does), 〈&L〉, uses an
operation – with some parallels to set
union – named fluent conjunction.

A fluent set in a temporal string,

ϕ, . . . , ϕn can be interpreted as the log-

ical conjunction of all the fluents in the
set holding true during that time period,∧n

i=1 ϕi .

Like a knowledge base, temporal
strings are a dynamic form of knowledge
representation (knowledge of events,
and relations between events); the
knowledge base may expand to incorpo-
rate new knowledge (often reducing the
size of the set modelled by the temporal
string). If a set from a temporal string
were represented in Prolog, one might
be tempted to make use of an anony-
mous tail variable to allow for the string
to grow, i.e. [ϕ1, . . . , ϕn|]. Because we
can interpret any set S in a temporal
string as a singleton set containing the
conjunction of all fluents in S, we can
state (2.49).

21

(∀α)(∀β)(α ∈ S ∧ β ∈ S)→ α ∧ β
(2.49)

(2.49) would be unsatisfiable for S =

e,¬e , as X ∧ ¬X is a contradiction.

Fluent conjunction 〈uL〉 is an operation
on fluent sets that performs union on
the sets, then checks the resultant set
for contradictions – returning ∅ should a
contradiction occur, or a singleton con-
taining the result of the union should no
contradiction occur (2.50)

A uL B =

{
{A ∪B} if

∧
α∈A

∧
β∈B α ∧ β

∅ otherwise

(2.50)

Unlike traditional 〈&〉, which operates
with component-wise union, (2.24), and
fails for input of unequal length, 〈&L〉
makes use of fluent conjunction 〈uL〉,
and fails for unsatisfiable fluent sets, as
well as input of unequal length.

(
α1 . . . αn

)
&L

(
β1 . . . βn

)
=

ϕ1 . . . ϕn

where
n∧
i=1

ϕi ∈ (αi uL βi) (2.51)

Evidently, (2.51) would fail while su-
perposing two strings of equal length
where two corresponding positions in
the strings cannot both be considered

true, e.g. fluent conjunction of e and

¬e .

Splicing and unifying As previously
mentioned, a position in a temporal
string can be thought of as a knowledge
base. Furthermore, a temporal string
can be thought of as a knowledge base
modelling state transitions in a timeline,
where a different knowledge base is con-
sidered for each state.

KB1 KB2 ←→ KB1 ≺ KB2

Definition 2.2.1. Alphabet of a time-
line The alphabet of a timeline is the
union of the alphabets of all the knowl-
edge bases which are consistent at some
point in the timeline.

The alphabet of a knowledge base is
the collection of TBox assertions in the
knowledge base. For example, the al-

phabet of a,¬b would not include b, as

it is part of an ABox, whereas it would
include a, as it is a factual assertion
whose evaluation to true or false isn’t
derived from the state of the knowledge
base (TBox).

Recalling Proposition 2, 〈@〉 must be
fitted with some behaviour to handle
timeline arguments of intersecting al-
phabets. We call this behaviour splic-
ing – taking two knowledge bases KB1
and KB2 and producing a third knowl-
edge base KB′ that is the combina-
tion of KB1 and KB2, capturing the
parts that are shared by KB1 and KB2,
and unifying the parts that are not
shared. Inconsistent knowledge bases
cannot be spliced. One of the cen-
tral constraints for consistency across
two temporal strings s and s′ (time-

22

lines) is the relative order of the sym-
bols from Σs ∩ Σs′ in s and s′ respec-
tively. This constraint can, for explana-
tory purposes, be described by the bc
and trim functions (2.52).

bc(trim(πΣs∩Σs′
s)) = bc(trim(πΣs∩Σs′

s′))
(2.52)

If we were to superpose the tempo-
ral strings for witness A’s testimony and
witness B’s (as described in two TML
document for example), we may first
want to know whether these two sources
are dictating consistent stories. A says
that Han shot (h), later Greedo shot
(g), then Han dodged (d). B says the
same, but omits the detail d, and in-
stead includes a detail that smoke ap-
peared (s) between h and g. In short, A

says h g d , and B says h s g . Al-

though A and B differ, their testimonies

are consistent, as h g is the left and

right result when both testimonies are
inserted into the test (2.52). If a judge
spliced the two testimonies together, the
sequence of events (a knowledge base)

h s g d would be attained.

Demarcation for ∆ To splice two
strings, s and s′, we first need to seg-
ment s and s′ into corresponding demar-
cations based on the occurrences of com-
mon ground in both strings. In other
words, given ∆ = Σs ∩ Σ′s (common
ground), we wish to break s and s′ re-
spectively into m and m′ of equal length,
where (2.53) holds for 〈m,m′〉.

|m,m′|∧
i=1

bc(trim(π∆mi)) = bc(trim(π∆m
′
i))

(2.53)

We can borrow the symbol for demar-
cation used earlier (•) to mark bound-
aries in m and m′ where portions con-
taining fragments of ∆ begin and end.
A segment α of a temporal string sur-
rounded by demarcation should satisfy
(2.54).

|bc(π∆α)| = 1 (2.54)

Before going into the formal definition
of ∆-demarcation, we will give an illus-
trative example.

a a, b b c d e, f

is {a, b, e}-demarcated as

ε • a • ε • a, b • ε • b • c d • e, f •

(2.55)

The same string would have been
{b, d}-demarcated as

a • a, b b • c • d • e, f

∆-demarcation makes use of a 2-state
system (“in ∆-segment” or “not in ∆-
segment”), and projection π∆ to demar-
cate a temporal string.

∆-demarcation of a string s is for-
mally described by the function f(s,∆)
in (2.56). The state for “in ∆-segment”

23

is described by the g function (2.57).
The demarcation process begins “out-
side” a ∆-segment, even if the first po-
sition in the temporal string contains a
TBox from ∆ – this would result in a ∆-
demarcated string with a point-marker
at the beginning (e.g. (2.55)).

f(αβ,∆) =

ε if αβ = ε

•.α.g(β, x,∆) otherwise if

|α| = 1∧
π∆α = x′∧
x′ 6= ∅

α.f(β,∆) otherwise for

|α| = 1

(2.56)

g(αβ, x,∆) =

• if αβ = ε

α.g(β, x,∆) otherwise if

|α| = 1∧
π∆α = x

•. • .α.g(β, x,∆) otherwise if

|α| = 1∧
π∆α = x′∧
x′ 6= ∅

•.α.f(β,∆) otherwise for

|α| = 1

(2.57)

Proposition 3. The ∆-demarcation
(2.56) of two consistent (2.53) strings
s and s′, with respective alphabets Σs

and Σs′ , Σs ∩Σs′ = ∆, produces demar-
cations m and m′, |bc(trim(π{•}m))| =
|bc(trim(π{•}m

′))|.

A ∆-segment of a temporal string (s)
is a portion w of s, such that π∆w =

ϕ n. This means a portion of the string

that holds common ground ϕ with ∆
throughout, and ϕ is constant across w.

Indexing a ∆-demarcation All ∆-
demarcations m of string s take the
form w(•w)∗ for w ∈ (2Σs)∗ (Note that
w may be ε). The first w in the ex-
pression is not a ∆-segment, as it is
not surrounded by “•”. This first seg-
ment w has index 1. From the defini-
tion of ∆-demarcation (2.56), we know
that demarcated ∆-segments are sur-
rounded by non-∆-segments, and non-
∆-segments are not demarcated from
other non-∆-segments (i.e. their neigh-
bours consist only of ∆-segments). In
other words, the point-markers demar-
cate the string s into segments alter-
nating between ∆-segments and non-∆-
segments. We know that the first w is a
non-∆-segment, therefore we know that
all odd indexes are non-∆-segments, and
all even indexes are ∆-segments.

Expressing w(•w)∗ in the form of a 3-
state finite state automata, and adding
an additional dimension of symbols to
the edges to build the transducer T (Fig-
ure 2.3), a good descriptive model is
gained for the process by which an in-
dex in the demarcation string is found.

for s = uiv, ¬marked(i), T (ui) = s′

index(i) = |s′| (2.58)

Disjoint superposition The original
basic case of superposition by fluent con-
junction (2.48), where the alphabets of
the arguments were disjoint, will now be
classed as a special case of superposi-
tion only applicable to strings sharing
no common alphabet symbols. We give

24

1start 2

3

w : a

•w : a

Figure 2.3: The finite state trans-
ducer T , outputting a string an equal
in length to the number of segments
in the input demarcated string

this type of superposition operation the
symbol 〈@̃〉.

Anchored superposition Anchored
superposition, in contrast to disjoint su-
perposition, is classed as the superposi-
tion of strings with intersecting alpha-
bets, and both strings are anchored to
the same segment of a timeline. The way
this is done is by the fluents intersect-
ing to the left and right of the strings
being superposed. Given string argu-
ment s and s′, Σleft(s)∩Lleft(s′) 6= ∅, and
Σright(s)∩Lright(s′) 6= ∅. The symbol 〈@∆〉
can be used for anchored superposition.
The reason the subscript ∆ is chosen is
because the ∆-segments described pre-
viously are precisely where this form of
superposition is applied.

Anchored superposition is carried out
between string segments s and s′, whose
shared alphabet ∆ is a subset of each
set at every respective position in s and

s′. E.g. x x, y x and x, d x, c for

∆ = x. Since the left and right mark-
ers of these two strings must align in the
combined superposition, the 〈%n〉 oper-
ation isn’t used at all. Instead positions
in either s or s′ may be split so that
the two strings align in length. At this
point, safe superposition 〈&〉 (2.27) is
applied across the strings. The maxi-
mum number of splits allowed in a string
s is the length of the other string s′ with
1 added. The shorter of the two strings
must be split until both strings align
in length, thus at least |s| − |s′| splits
are necessary for the short of the two
strings, s′.

Superposing temporal strings s and s′

of possibly unequal length, with possi-
ble intersections between both alphabets
is a process involving many steps which
have been described individually exten-
sively at this point. The entire process
is put into perspective in the ordered list
of steps below:

(a) Finding the intersection ∆ of Σs

and Σs′ (where Σx denotes the al-
phabet of timeline string x; Defini-
tion 2.2.1)

(b) Determining whether s and s′ are
consistent, using ∆ (2.52)

(c) Creating demarcations m and m′

for the string s and s′ respectively,
based on the occurrences of α ∈ ∆
in both strings (2.56)

(d) Mapping these demarcations to
one another (both segmentations
should be of equal length, and nei-
ther should begin with a segment
containing α ∈ ∆) (Proposition 3)

25

(e) Applying

(i) 〈@̃〉 between segments at odd
positions, and

(ii) 〈@∆〉 between segments at
even positions

and concatenating the results to-
gether.

2.2.3 Splicing: A Useful
Temporal String Op-
eration

At this point, many new operations
have been described which attempt to
model not only the superposition of
equal length, disjoint strings, but the
superposition of variable length strings
with segments of common ground. This
attempt to model a more robust form
of superposition for the purposes of rea-
soning with TML documents is arguably
no longer described properly by the term
superposition.

It is suggested that the term splic-
ing be used to describe the sum of the
steps outlined in the previous section.
Furthermore, it is noted that splicing,
unlike the interval-on-string superposi-
tion operation from which it derives,
is a transitive and commutative rela-
tion. Yet it can be used either to
superpose basic intervals over strings,
or strings over other strings. It could
also be used iteratively to splice tem-
poral string languages together. Due
to the application of the new “demar-
cation” approach to both superposition
(in the 〈%n〉 operation), and splicing

(in ∆-demarcation), much of the redun-
dant computation (duplicate results, re-
liance on larger, non-finite data struc-
tures) present in traditional superposi-
tion using the bc and trim functions is
addressed. This universal splicing oper-
ation can be used to build up a knowl-
edge base from temporal relations be-
tween intervals.

Since much of the operations we used
intermediately to arrive at the construc-
tion of splice are now replaceable by the
splice operation, some symbols should
be recycled.

It should be stated exactly what the
splicing model consists of at this point:
The symbol 〈@〉 is adopted to describe
the universal splicing operation, as its
prior usage can be replaced by the splice
operation.

s = α1 . . . αn

s′ = β1 . . . βn

Σs =
⋃
α∈s

Σα

Σ′s =
⋃
β∈s′

Σβ

∆ = Σs ∩ Σ′s
m = f(s,∆) = m1 . . .mp

m′ = f(s′,∆) = m′1 . . .m
′
p

s@s′ =

(m1@̃m′1).(m2@∆m
′
2).

(m3@̃m′3).(m4@∆m
′
4) . . .

Since 〈@〉 can be used to splice to-
gether temporal relations described in
string format, we can describe the pro-
cess by which a TML document is mod-

26

elled as a string representations (2.59).

@
R∈DOC

sR |= F (2.59)

where F is a language of temporal string
representations describing the temporal
events and relations in the document,
and sR is an Allen relation in string
format, as outlined in Fernando (2013).
This language is not only regular, but
finite.

2.3 Temporal

Taxonomies

During the construction of a string rep-
resentation of events, the special Allen
relation sets dur and con are of partic-
ular importance. Given a TML docu-
ment, annotating a news item, we’d like
to eventually represent the relation be-
tween events in a format that is both
human-readable and equivalent to MSO,
e.g.

s = wc,m1 wc,m1, g1 wc,m1 . . . wc,m3

(2.60)

The string in (2.60) may be thought
of as representing a news article relat-
ing to the World Cup (wc). The TML
markup specifies that several matches,
m1 . . .m3, occur during the world cup,
and several (or no) goals (g1 . . . gn) oc-
cur in each game. It also specifies the
relative order of the matches and the
goals. TML may even state that a few
matches began and ended at the same

wc

m1

g1

m2

g2 g3

m3

Figure 2.4: The temporal taxonomy
for the string in (2.60)

time. This is valid TML, and valid
TML should has a valid string repre-
sentation. Reaching that representation
isn’t so trivial, and the order in which we
try to build s will determine how fast we
reach a valid representation. Once we
apply constraint propagation, we may
find that all goals that occur during
matches occurring during the world cup,
are also event intervals that occur during
the world cup. However, to begin our
construction of s by building a string en-
capsulating the relation between wc and
g1 . . . gn would be unwise, as we’ll later
have to greatly modify such a string
to integrate the matches contained (im-
mediately) during wc. Taxonomies are
acyclic ontologies with only one label
possible (contains in our case). Thus
they model a small fragment of what an
ontology can express. We define tempo-
ral taxonomy to be a tree-like structure
depicting the composition of intervals.
A non-hierarchical taxonomy is ideal for
our purposes, as temporal composition
cannot (to our knowledge) be cyclical;
a contains b → ¬(b contains a), and
the contains relation is transitive.

The purpose of this representation

27

is to reveal in what order we should
consider our intervals for addition to a
string representation. We begin at the
leaves of the tree, stripping away each
layer sequentially, until we arrive at the
root. Later, we will explain why this is a
good approach to building strings from
interval networks.

2.3.1 An algorithm for
Hierarchical Tax-
onomies

Terminology A holds rela-
tion between two intervals is one
that is a subset of Allen’s special
dur relation, which was the am-
biguous set {d, s, f}. A held-by
relation between two intervals is
one that is a subset of Allen’s
special con relation, {di, si, fi}.

(∀a)(∀b)a holds b←→ b held-by a

Reducing the temporal network
Reducing an Allen interval network (on-
tology) to intransitive taxonomy in-
volves removing all relations (edges)
that are neither holds nor held-by re-
lations. We then remove all nodes
that are no longer connected to any
other node by a relation. Finally the
held-by relations between any pair of
nodes 〈ηs, ηd〉 are replaced with a rela-
tion holds between the nodes in reverse,
〈ηd, ηs〉 (should this holds relation al-
ready exist in the network, a simple dele-
tion of the held-by is carried out). What
remains is an intransitive taxonomy of
the holds relations.

η0

wc m1 . . . g3 m3

Figure 2.5: The starting point of the
algorithm for building up a hierar-
chical taxonomy when applied to the
“World Cup” TML document exam-
ple

To further reduce this to a transitive
non-hierarchical taxonomy, we can ap-
ply iteratively an algorithm for building
up a taxonomy from an input stream of
rules. We begin with all intervals in an
alphabet placed as children to a master
node (Figure 2.5)

A non-hierarchical taxonomy can be
represented in Prolog as a list of triples

node : children : descendents

where children and descendents are
lists of nodes. The descendents list is
redundant, but it serves a purpose while
updating the taxonomy. The starting
state of the taxonomy shown in Figure
2.5 can be depicted in Prolog with the
list (2.61)

[

η0 : [wc,m1, g3,m3|X] : [wc,m1, g3,m3|X],

wc : [] : [],

m1 : [] : [],

g3 : [] : [],

m3 : [] : []|
] (2.61)

The process by which the initial taxon-
omy is built from an alphabet of inter-

28

vals, and modified by a list of holds re-
lations, can be described in Prolog as
follows:

relset2taxonomy(RelSet,A,Taxo) :-

initialtaxo(A,Init),

in2taxonomy(RelSet,Init,Taxo).

in2taxonomy([],X,X).

in2taxonomy([H|T],In,Out) :-

morphtaxtree(In,Mid,H),

in2taxonomy(T,Mid,Out).

initialtaxo(Alpha,[H|Nodes]) :-

H = e0:Alpha:Alpha,

initaxnodes(Alpha,Nodes).

initaxnodes([],[]).

initaxnodes([H|A],[H:[]:[]|B]) :-

initaxnodes(A,B).

Listing 2: Building a taxonomy from
a relation set in Prolog

in2taxonomy simply adds a set of
holds relations iteratively to the ini-
tial taxonomy, by a predicate for updat-
ing the taxonomy, titled morphtaxtree.
morphtaxtree can be described as an al-
gorithm (Algorithm 3), though it can
also be defined declaratively in Prolog.

Line 2 of Algorithm 3 deletes the node
A from the taxonomy, and places the
deleted node and related information
(children and descendants) into the two
variable ASub and ADes, respectively.
If B is in the descendants of A, then
we need not add this information to the
taxonomy, so T is returned to its orig-
inal state (on entry to the procedure),
and the story ends there.

Algorithm 3 Adds a relation to a non-
hierarchical taxonomy, while maintain-
ing consistency

1: procedure Morph(T,A→ B)
2: : ASub : ADes← T.del(A)
3: if B ∈ ADes then
4: T ← T ∪ {A : ASub : ADes}
5: else
6: : : BDes← T.find(B)
7: X ← {B} ∪BDes
8: Des′ ← ADes ∪X
9: Sub′ ← {B}∪(ASub−BDes)
10: A′ ← A : Sub′ : Des′

11: T ′ ← {A′}
12: for N : C : D ∈ T do
13: U(T ′, A,B,X,N : C : D)
14: end for
15: T ← T ′

16: end if
17: end procedure
18: procedure U(T,A,B,X,N : C :

D)
19: if A ∈ D then
20: if B ∈ D then
21: if B ∈ C then
22: Y ← C −X
23: T ′ ← T ′∪{N : Y : D}
24: else
25: T ′ ← T ′∪{N : C : D}
26: end if
27: else
28: T ′ ← T ′ ∪ {N : C : (D ∪

X}
29: end if
30: else
31: T ′ ← T ′ ∪ {N : C : D}
32: end if
33: end procedure

29

Otherwise, new information is being
added, so we continue in the else clause.
Line 6 finds the B node in the taxon-
omy, and places its descendants set in
the variable BDes. B is added to both
the children and descendants sets of A
at this point (lines 8 and 9). After these
sets are updated, we must also update
the rest of the taxonomy, wherever A
occurs in the descendants, and wherever
B occurs as a child or descendent; this
is the purpose of the iterative call to U
(update).

Disregarding knowledge of the inter-
val alphabet, which is used to build
the initial taxonomy, this algorithm for
building a transitive non-hierarchical
taxonomy is online, meaning it may
begin running before the entire input
stream of holds relations is passed to it.
In fact, passing the alphabet to an initial
taxonomy in advance, can be avoided by
building the initial taxonomy gradually,
as the alphabet of the interval network
becomes known. We simply build the
initial taxonomy in advance in this pa-
per for explanatory purposes. Fernando
(2016) notes that in many applications
of finite state techniques, the alphabet
of a machine, grammar, sentence etc. is
treated as a dynamic construct, which
may be enlarged gradually (in an online
algorithm such as Algorithm 3, for ex-
ample).

The version of Algorithm 3 for a dy-
namic alphabet (realised gradually via
the stream of holds rules) would involve
checking if the taxonomy contains any
such A before line ??. If it doesn’t, sim-
ply add A : [B] : [B] to the taxonomy,

update η0 to contain A as both a child
and a descendent (removing B from the
children of η0 if possible).

morphtaxtree(In,Out,[A,B]) :-

rmember(A:AChildren:ADesc,In,Y),

(member(B,ADesc) ->

In = Out;

member(B:_:BDesc,Y),

union(ADesc,[B|BDesc],Z),

set_diff(AChildren,BDesc,X),

ChildrenPlusB = [B|X],

NewA = A:ChildrenPlusB:Z,

findall(Row,

updatetax([A,B],Z,Y,Row),

T),

Out = [NewA|T]).

updatetax([A,B],BDesc,In,Out) :-

member(Node:Sub:Desc,In),

(member(A,Desc) ->

(member(B,Desc) ->

(member(B,Sub) ->

set_diff(Sub,BDesc,New),

Out = Node:New:Desc;

Out = Node:Sub:Desc);

union(Desc,BDesc,NewDesc),

Out = Node:Sub:NewDesc

);

Out = Node:Sub:Desc

).

Listing 3: Algorithm 3 in Prolog

Listing 3 is the declarative approach
to the same process described by Algo-
rithm 3, replacing iteration, by the use
of the member predicate. The rmember
predicate is similar to member, but also

30

unifies a third argument with a version
of the list (or set), excluding a member
(should one exist). There is some signif-
icant time advantage to an imperative
approach, however, as set opeations like
symmetric set difference, can be imple-
mented with data structures which per-
mit O(1) operations.

Analysis of the taxonomy building
algorithm The main advantage of Al-
gorithm 3 is its online properties. It
can used as the kernel of an algorithm
for building up taxonomies dynamically
from a stream of data. To achieve this,
each call to Morph takes O(n) worst-
case asymptotic time to execute on a
taxonomy containing n nodes. This
means, the larger the taxonomy grows,
the longer it will take to update it with
new information. This analysis is based
on the single loop featured in Algorithm
3, line 12.

2.3.2 Application of the
Temporal Taxonomy

We apply the temporal taxonomy to
the process for generating strings from
Allen interval networks, by using it to
generate heuristics.

Terminology An interval i is
embedded in an interval η if
η holds i. Recalling that
holds is a transitive relation,
we may refer to an embed-
ding degree of i as the maxi-
mal length chain of holds rela-
tions leading from a reference
point η0 to i. For example,
〈η0 holds η1 holds η2 holds i〉,
being a maximal length chain
from η0 to i, means that i has
an embedding degree of 3 (with
reference point η0).

The embedding degree is the heuristic
used to determine in which order we
should construct strings for event net-
works. The most deeply nested inter-
vals (highest embedding degree) are ex-
amined, and their respective string or
string sets (should ambiguity exist) are
computed. The next most embedded are
then addressed, building upon the re-
sults of the previously computed strings
or string sets.

The temporal taxonomy is very useful
here, as it models the nested structure of
intervals, and the next round according
to the heuristic is implicitly described
by the tree structure; we deal with the
leaves, then we trim the leaves, then we
repeat the process, until we reach the
root.

31

Chapter 3

Conclusion

The aim of this paper was to connect
TimeML to MSO. It is indeed achiev-
able through the use of the temporal
string representation to place parts of
a TML document into MSO. The par-
allels between ISO-TimeML and Allen
interval logic are stark, though not fully
utilised in the corpora available. At the
beginning of this paper, statistical anal-
ysis of the corpora was brought forward,
and it appeared that all TimeML cor-
pora had a predisposition towards the
usage of certain fragments of the stan-
dard, but not others. Many of the news
items in the corpora were not annotated
in a consistent manner – some were an-
notated so inconsistently that Allen con-
straint propagation failed (recall that
this would mean a very visible logical
flaw between a set of three events linked
in the text). Others were labelled in-
consistently, but not evidently (figuring
this out is NP-hard). Some were marked
consistently.

TimeML is robust, not all parts of
the language have been explored by cor-
pus linguists. It wasn’t possible to look
at the language as a whole – there are
simply too many purposes to consider,
and too little data to work with. For

the fragments of TimeML which were
examinined (events, durations as inter-
vals and temporal relations), success was
found in the creation of a new operation
that makes the construction and com-
bination of temporal strings straight-
forward.

It is hoped that the splice oper-
ation outlined in this paper can be
used, in conjunction with the taxonomy-
based heuristic outlined, to form tem-
poral string representations from well-
structured TimeML documents, which
can then be used in formal verification
techniques, or to form visualisations of
events. These strings are logically equiv-
alent to MSO.

A handful of smaller problems met
along the way were also addressed, such
as the suggested optimisations and cor-
rections for the Allen constraint propa-
gation algorithm, the in-place approach
to superposition using segmentation,
and the online algorithm for building up
a non-hierarchical taxonomy from either
a preset or dynamic alphabet.

32

Acknowledgements

I must credit Dr. Tim Fernando for his continual guidance during the months
leading up to the completion of this thesis, and also Dr. Khurshid Ahmad for his
constructive criticism during the demonstration period.

33

Bibliography

Allen, J. F. (1983). Maintaining Knowledge about Temporal Intervals. Commu-
nications of the ACM , 26 .

Bittar, A., Amsili, P., Denis, P., & Danlos, L. (2011). French TimeBank: An
ISO-TimeML Annotated Reference Corpus. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics:shortpapers (Vol. 49,
p. 130-134). Portland,Oregon: Association for Computational Linguistics.

Büchi, J. R. (1962). On a Decision Method in Restricted Second Order Arith-
metic. In Logic, Methodology and Philosophy of Science: Proceedings of the 1960
International Congress (p. 1-11). Stanford University Press.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction
to Algorithms (3rd ed.). The MIT Press.

Fernando, T. (2002). A Finite-State Approach to Event Semantics. In Proceedings
of the Ninth International Symposium on Temporal Representation and Reason-
ing (TIME’02) (Vol. 9). Association for Computer Science.

Fernando, T. (2004). A Finite-State Approach to Events in Natural Language
Semantics. Journal of Logic and Computation, 14 , 79-92.

Fernando, T. (2012). A Finite-State Temporal Ontology and Event-Intervals. In
Proceedings of the 10th International Workshop on Finite State Methods and
Natural Language Processing (Vol. 10, p. 80-89). Donastia, San Sebastián: As-
sociation for Computational Linguistics.

Fernando, T. (2013). Segmenting Temporal Intervals for Tense and Aspect. In
Proceedings of the 13th Meeting on the Mathematical Language (Vol. 13, p. 30-
40). Sofia, Bulgaria: Association for Computer Science.

Fernando, T. (2016). On Regular Languages Over Power Sets. In (Vol. 4, p. 29-56).

James, P., Lee, K., Bunt, H., & Romary, L. (2010). ISO-TimeML: An International
Standard for Semantic Annotation..

34

Pustejovsky, J., Gaizauskas, R., & Katz, G. (2002). TimeML: Robust Specification
of Event and Temporal Expressions in Text. IWCS-5 .

Pustejovsky, J., Hanks, P., Sauŕı, R., See, A., Gaizauskas, R., Setzer, A., . . . Lazo,
M. (2003). The timebank corpus..

35

Modified Allen Constraint Propagation

int allenAdd(int i, int r, int j, AllenNet fsa) {

for (int x = 0; x < fsa.size() * fsa.size(); x++)

update[x] = false;

toDoQ.enqueue(i);

toDoQ.enqueue(j);

int lim, n, tr;

int *ks;

fsa.setRel(i, r, j);

do {

i = toDoQ.dequeue();

j = toDoQ.dequeue();

r = fsa.rel(i, j);

update[i * fsa.size() + j] = false;

ks = fsa.right(i);

for (int k = 0; k < fsa.size(); k++) {

n = fsa.rel(k, j);

tr = constraints(invertRel(ks[k]), r) & n;

// Proper subset

if ((tr & n) == tr && tr != n) {

if (!update[k * fsa.size() + j]) {

update[k * fsa.size() + j] = true;

toDoQ.enqueue(k);

toDoQ.enqueue(j);

}

fsa.setRel(k, tr, j);

}

}

ks = fsa.right(j);

for (int k = 0; k < fsa.size(); k++) {

n = fsa.rel(i, k);

tr = constraints(r, ks[k]) & n;

// Proper subset

if ((tr & n) == tr && tr != n) {

if (!update[i * fsa.size() + k]) {

update[i * fsa.size() + k] = true;

toDoQ.enqueue(i);

toDoQ.enqueue(k);

}

fsa.setRel(i, tr, k);

36

}

}

} while (!toDoQ.isEmpty());

}

int constraints(int R1, int R2) {

int constr = 0;

int R2T;

for (int i = 0; R1 != 0; i++) {

if (R1 & 1) {

R2T = R2;

for (int j = 0; R2T != 0; j++) {

if (R2T & 1) {

constr |= TRANS_TABL[i][j];

}

R2T >>= 1;

}

}

R1 >>= 1;

}

return constr;

}

DLD File for TimeML

<!ELEMENT TimeML (#PCDATA | ALINK | CONFIDENCE | EVENT |

MAKEINSTANCE | SIGNAL | SLINK | TIMEX3 | TLINK)* >

<!ATTLIST TimeML xsi:noNamespaceSchemaLocation CDATA #IMPLIED >

<!ATTLIST TimeML xmlns:xsi CDATA #IMPLIED >

<!ATTLIST TimeML comment CDATA #IMPLIED >

<!ELEMENT EVENT (#PCDATA) >

<!ATTLIST EVENT eid ID #REQUIRED >

<!ATTLIST EVENT class (ASPECTUAL | I_ACTION | I_STATE |

OCCURRENCE | PERCEPTION | REPORTING | STATE) #REQUIRED >

<!ATTLIST EVENT stem CDATA #IMPLIED >

<!ATTLIST EVENT comment CDATA #IMPLIED >

<!ELEMENT MAKEINSTANCE EMPTY >

<!ATTLIST MAKEINSTANCE eiid ID #REQUIRED >

<!ATTLIST MAKEINSTANCE eventID IDREF #REQUIRED >

37

<!ATTLIST MAKEINSTANCE signalID IDREF #IMPLIED >

<!ATTLIST MAKEINSTANCE pos (ADJECTIVE | NOUN | VERB |

PREPOSITION | OTHER | UNKNOWN) #REQUIRED >

<!ATTLIST MAKEINSTANCE tense (FUTURE | INFINITIVE |

NONE | PAST | PASTPART | PRESENT | PRESPART) #REQUIRED >

<!ATTLIST MAKEINSTANCE aspect (NONE | PERFECTIVE |

PERFECTIVE_PROGRESSIVE | PROGRESSIVE) #REQUIRED >

<!ATTLIST MAKEINSTANCE cardinality CDATA #IMPLIED >

<!ATTLIST MAKEINSTANCE polarity (POS | NEG) #REQUIRED >

<!ATTLIST MAKEINSTANCE modality CDATA #IMPLIED >

<!ATTLIST MAKEINSTANCE comment CDATA #IMPLIED >

<!ELEMENT TIMEX3 (#PCDATA) >

<!ATTLIST TIMEX3 tid ID #REQUIRED >

<!ATTLIST TIMEX3 type (DATE | DURATION | SET | TIME) #REQUIRED >

<!ATTLIST TIMEX3 value NMTOKEN #REQUIRED >

<!ATTLIST TIMEX3 anchorTimeID IDREF #IMPLIED >

<!ATTLIST TIMEX3 beginPoint IDREF #IMPLIED >

<!ATTLIST TIMEX3 endPoint IDREF #IMPLIED >

<!ATTLIST TIMEX3 freq NMTOKEN #IMPLIED >

<!ATTLIST TIMEX3 functionInDocument (CREATION_TIME |

EXPIRATION_TIME | MODIFICATION_TIME | PUBLICATION_TIME |

RELEASE_TIME | RECEPTION_TIME | NONE) #IMPLIED >

<!ATTLIST TIMEX3 mod (BEFORE | AFTER | ON_OR_BEFORE |

ON_OR_AFTER | LESS_THAN | MORE_THAN | EQUAL_OR_LESS |

EQUAL_OR_MORE | START | MID | END | APPROX) #IMPLIED >

<!ATTLIST TIMEX3 quant CDATA #IMPLIED >

<!ATTLIST TIMEX3 temporalFunction (false | true) #IMPLIED >

<!ATTLIST TIMEX3 valueFromFunction IDREF #IMPLIED >

<!ATTLIST TIMEX3 comment CDATA #IMPLIED >

<!ELEMENT SIGNAL (#PCDATA) >

<!ATTLIST SIGNAL sid ID #REQUIRED >

<!ATTLIST SIGNAL comment CDATA #IMPLIED >

<!ELEMENT ALINK EMPTY >

<!ATTLIST ALINK lid ID #REQUIRED >

<!ATTLIST ALINK relType (CONTINUES | CULMINATES |

INITIATES | REINITIATES | TERMINATES) #REQUIRED >

<!ATTLIST ALINK eventInstanceID IDREF #REQUIRED >

38

<!ATTLIST ALINK relatedToEventInstance IDREF #REQUIRED >

<!ATTLIST ALINK signalID IDREF #IMPLIED >

<!ATTLIST ALINK syntax CDATA #IMPLIED >

<!ATTLIST ALINK comment CDATA #IMPLIED >

<!ELEMENT SLINK EMPTY >

<!ATTLIST SLINK lid ID #REQUIRED >

<!ATTLIST SLINK relType (CONDITIONAL | COUNTER_FACTIVE |

EVIDENTIAL | FACTIVE | MODAL | NEG_EVIDENTIAL) #REQUIRED >

<!ATTLIST SLINK eventInstanceID NMTOKEN #REQUIRED >

<!ATTLIST SLINK subordinatedEventInstance NMTOKEN #REQUIRED >

<!ATTLIST SLINK signalID NMTOKEN #IMPLIED >

<!ATTLIST SLINK syntax CDATA #IMPLIED >

<!ATTLIST SLINK comment CDATA #IMPLIED >

<!ELEMENT TLINK EMPTY >

<!ATTLIST TLINK lid ID #REQUIRED >

<!ATTLIST TLINK relType (BEFORE | AFTER | INCLUDES |

IS_INCLUDED | DURING | DURING_INV | SIMULTANEOUS |

IAFTER | IBEFORE | IDENTITY | BEGINS | ENDS | BEGUN_BY |

ENDED_BY) #REQUIRED >

<!ATTLIST TLINK eventInstanceID IDREF #IMPLIED >

<!ATTLIST TLINK timeID IDREF #IMPLIED >

<!ATTLIST TLINK relatedToEventInstance IDREF #IMPLIED >

<!ATTLIST TLINK relatedToTime IDREF #IMPLIED >

<!ATTLIST TLINK signalID IDREF #IMPLIED >

<!ATTLIST TLINK origin CDATA #IMPLIED >

<!ATTLIST TLINK syntax CDATA #IMPLIED >

<!ATTLIST TLINK comment CDATA #IMPLIED >

<!ELEMENT CONFIDENCE EMPTY >

<!ATTLIST CONFIDENCE tagType (EVENT |

MAKEINSTANCE | TIMEX3 | SIGNAL |

ALINK | SLINK | TLINK) #REQUIRED >

<!ATTLIST CONFIDENCE tagID IDREF #REQUIRED >

<!ATTLIST CONFIDENCE attributeName CDATA #IMPLIED >

<!ATTLIST CONFIDENCE confidenceValue CDATA #REQUIRED >

<!ATTLIST CONFIDENCE comment CDATA #IMPLIED >

39

French TimeML DLD

<!ELEMENT TimeML (ALINK | SLINK | TEXT | TLINK)* >

<!ELEMENT TEXT (#PCDATA | EVENT | SIGNAL | TIMEX3)* >

<!ELEMENT EVENT (#PCDATA) >

<!ATTLIST EVENT aspect (IMPERFECTIVE | PERFECTIVE |

PERFECTIVE_PROGRESSIVE | PROGRESSIVE |

PROSPECTIVE) #IMPLIED >

<!ATTLIST EVENT class (ASPECTUAL | CAUSE | EVENT_CONTAINER |

I_ACTION | I_STATE | MODAL | OCCURRENCE | PERCEPTION |

REPORTING | STATE) #REQUIRED >

<!ATTLIST EVENT cardinality NMTOKEN #IMPLIED >

<!ATTLIST EVENT eid NMTOKEN #REQUIRED >

<!ATTLIST EVENT eiid ID #REQUIRED >

<!ATTLIST EVENT modality (NECESSITY | OBLIGATION | PERMISSION

| POSSIBILITY) #IMPLIED >

<!ATTLIST EVENT mod (START | MID | END) #IMPLIED >

<!ATTLIST EVENT mood (CONDITIONAL | SUBJUNCTIVE) #IMPLIED >

<!ATTLIST EVENT polarity (NEG | POS) #IMPLIED >

<!ATTLIST EVENT pos (ADJECTIVE | NOUN | PREPOSITION | VERB) #REQUIRED >

<!ATTLIST EVENT pred CDATA #REQUIRED >

<!ATTLIST EVENT tense (FUTURE | IMPERFECT | PAST | PRESENT) #IMPLIED >

<!ATTLIST EVENT vform (GERUNDIVE | INFINITIVE | PASTPART |

PRESPART) #IMPLIED >

<!ELEMENT SIGNAL (#PCDATA) >

<!ATTLIST SIGNAL sid ID #REQUIRED >

<!ELEMENT TIMEX3 (#PCDATA) >

<!ATTLIST TIMEX3 anchorTimeID IDREF #IMPLIED >

<!ATTLIST TIMEX3 beginPoint IDREF #IMPLIED >

<!ATTLIST TIMEX3 endPoint IDREF #IMPLIED >

<!ATTLIST TIMEX3 functionInDocument (CREATION_TIME |

EXPIRATION_TIME | MODIFICATION_TIME | PUBLICATION_TIME |

RELEASE_TIME | RECEPTION_TIME | NONE) #IMPLIED >

<!ATTLIST TIMEX3 freq NMTOKEN #IMPLIED >

<!ATTLIST TIMEX3 mod (BEFORE | AFTER | ON_OR_BEFORE |

ON_OR_AFTER | LESS_THAN | MORE_THAN | EQUAL_OR_LESS |

EQUAL_OR_MORE | START | MID | END | APPROX) #IMPLIED >

40

<!ATTLIST TIMEX3 quant (EVERY | SOME) #IMPLIED >

<!ATTLIST TIMEX3 temporalFunction (true | false) #IMPLIED >

<!ATTLIST TIMEX3 tid ID #REQUIRED >

<!ATTLIST TIMEX3 type (DATE | DURATION | SET | TIME) #REQUIRED >

<!ATTLIST TIMEX3 value CDATA #REQUIRED >

<!ATTLIST TIMEX3 valueFromFunction NMTOKEN #IMPLIED >

<!ELEMENT ALINK EMPTY >

<!ATTLIST ALINK eventInstanceID IDREF #REQUIRED >

<!ATTLIST ALINK lid ID #REQUIRED >

<!ATTLIST ALINK origin NMTOKEN #REQUIRED >

<!ATTLIST ALINK relType (CONTINUES | CULMINATES |

INITIATES | REINITIATES | TERMINATES) #REQUIRED >

<!ATTLIST ALINK relatedToEventInstance IDREF #REQUIRED >

<!ATTLIST ALINK signalID IDREF #IMPLIED >

<!ELEMENT SLINK EMPTY >

<!ATTLIST SLINK eventInstanceID IDREF #REQUIRED >

<!ATTLIST SLINK lid ID #REQUIRED >

<!ATTLIST SLINK origin NMTOKEN #REQUIRED >

<!ATTLIST SLINK relType (CONDITIONAL | COUNTER_FACTIVE |

EVIDENTIAL | FACTIVE | MODAL | NEG_EVIDENTIAL |

NEGATIVE) #REQUIRED >

<!ATTLIST SLINK subordinatedEventInstance IDREF #REQUIRED >

<!ATTLIST SLINK signalID IDREF #IMPLIED >

<!ELEMENT TLINK EMPTY >

<!ATTLIST TLINK eventInstanceID IDREF #IMPLIED >

<!ATTLIST TLINK lid ID #REQUIRED >

<!ATTLIST TLINK origin NMTOKEN #REQUIRED >

<!ATTLIST TLINK relType (AFTER | BEFORE | BEGINS | BEGUN_BY |

DURING | ENDED_BY | ENDS | IAFTER | IBEFORE | IDENTITY |

INCLUDES | IS_INCLUDED | OVERLAP_AFTER | OVERLAP_BEFORE |

SIMULTANEOUS | UNKNOWN) #REQUIRED >

<!ATTLIST TLINK relatedToEventInstance IDREF #IMPLIED >

<!ATTLIST TLINK relatedToTime IDREF #IMPLIED >

<!ATTLIST TLINK signalID IDREF #IMPLIED >

<!ATTLIST TLINK timeID IDREF #IMPLIED >

41

Code

Some of the code used to test the assertions made in this paper are included on a
disk accompanying this paper. The code consists of the C++ implementation of
Allen’s algorithm, as well as a Prolog knowledge base for parsing TimeML, carrying
out statistical analysis, and producing intermediate representation of temporal
relations.

42

	Introduction
	TimeML
	TimeML Specification
	The TIMEBANK Corpus
	The French TimeBank Corpus
	Statistical Analysis of TimeML Usage

	Interval Logic
	Temporal Strings
	The Satisfiability Problem

	Methodology
	Constraint Propagation
	Low-level Optimisations for Allen's Algorithm

	Superposition to Splicing
	Classes of Superposition
	Superposition in TimeML
	Splicing: A Useful Temporal String Operation

	Temporal Taxonomies
	An algorithm for Hierarchical Taxonomies
	Application of the Temporal Taxonomy

	Conclusion
	Bibliography
	Appendices
	Modified Allen Constraint Propagation
	DLD File for TimeML
	French TimeML DLD
	Code

