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CO*IR: A Greedy and Individually Fair Re-ranker
Seán Healy, ADAPT Centre, Dublin City University
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● Published fairness methodologies can be computationally intensive.
● This restricts fairness interventions to larger organisations.

● Academic lock-in: fairness solutions can be difficult to deploy.
● Contemporary research often places compatibility issues ‘out-of-scope’.
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● Fairness solutions can come without built-in 
quality constraints.

● Quality is a central concern of information  
system users and operators
(Al-Maskari et al., 2010)

Motivation
How can we increase 
fair ranking adoption 
in small-to-medium 

sized businesses?

Proposed Methods

● Use an algorithmically ‘greedy’ approach; This reduce computational cost-of-entry.
● Focus on individually fair re-ranking first; This doesn’t require identity information.

Fairness

● Ensure proposed methods include a quality threshold.

● Package proposed solutions for immediate deployment; 
otherwise nobody else will ever do it.
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Fig 2. DL-based fairness interventions as bourgeois solutionism:
          Computational power is correlated with national wealth.

Cost-of-Entry
- 4 x GPUs
- 1 x data science team
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BackgroundWhat I talk about when I talk about “Individual Fairness”
“Individual fairness in ranking” is all about ensuring that search result exposure is allocated proportionally to merit.

This approach requires application across a number of duplicated queries.

Fig 1. Amortized individual fairness (Biega, Gummandi and Weikum, 2018) in action.

Explaining Greedy Ranking to a Multi-disciplinary Audience
● Produce a ranking item-by-item (highest ranks done first).
● Choose the most under-represented item at the current moment (except if it’s really bad).

● I.e. stay optimistic (but not unrealistic) that we will meet the quality threshold in the end.
● Expect some increase in how many duplicate queries are needed to achieve fairness.

(sub-optimality)

Software package homepage:
https://librecoir.com/

Fig 3. Visualising greedily fair re-ranking.
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