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What I talk about when I talk about “Individual Fairness”

“Individual fairness in ranking” is all about ensuring that search result exposure is allocated proportionally to merit.

This approach requires application across a number of duplicated queries.
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How can we increase
fair ranking adoption
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Fig 1. Amortized individual fairness (Biega, Gummandi and Weikum, 2018) in action.
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e Fairness solutions can come without built-in
quality constraints.

e Quality is a central concern of information
system users and operators

(Al-Maskari et al., 2010)

e Published fairness methodologies can be computationally intensive.
e This restricts fairness interventions to larger organisations.

o Academic lock-in: fairness solutions can be difficult to deploy.
« Contemporary research often places compatibility issues ‘out—of—scope’.
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Fig 2. DI1.-based fairness interventions as bourgeois solutionism:
Computational power is correlated with national wealth.

Proposed Methods

e Package proposed solutions for immediate deployment;
otherwise nobody else will ever do it.
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e Use an algorithmically ‘greedy’ approach; This reduce computational cost-of-entry.
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e Focus on individually fair re-ranking first; This doesn’t require identity information.
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Fig 3. Visualising greedily fair re-ranking.

Software package homepage:

https://librecoir.com/
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Explaining Greedy Ranking to a Multi-disciplinary Audience

e Produce a ranking item-by-item (highest ranks done first).
 Choose the most under-represented item at the current moment (except if it’s really bad).
e L.e. stay optimistic (but not unrealistic) that we will meet the quality threshold in the end.
e Expect some increase in how many duplicate queries are needed to achieve fairness.
(sub-optimality)
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